
C# Patterns Cheatsheet

Name Description Examples

Constant pattern Matches a specific constant value.
case 1:
case "hello":

Type pattern
Matches a specific type or checks if a

value is of a specific type.

case int i:
case string s:

Var pattern
Matches any value and assigns it to a

new variable.

case var x:
case var (a, b):

Disjunctive pattern
Matches any pattern in a set of

patterns.

case 0 or 1:
case "foo" or "bar":

Conjunctive pattern
Matches a pattern if all subpatterns

match.

case Point { X: 1, Y: 2 }
and { X: 3, Y: 4 }:
case var (x, y) and (x > 0,
y > 0):

Negated pattern
Matches a pattern if the given pattern

does not match.

case not null:
case not 0:

Recursive pattern
Matches a pattern against nested

subpatterns.

case List<int> { Capacity: 0
}:
case (1, (2, 3)):

Relational pattern

(with constant)

Matches values based on a relational

condition with a constant value.

case > 10:
case <= 5:

Relational pattern

(with type)

Matches values based on a relational

condition with a value of a specific type.

case < (int)DateTime.Now:
case >= (double)Math.PI:

Size pattern
Matches an array or collection of a

specific size.

case int[] { Length: 0 }:
case List<int> { Count: 10
}:

Property pattern
Matches an object based on its

properties.

case Point { X: 1, Y: 2 }:
case { Length: 0 }:

Tuple pattern
Matches a tuple or deconstructs a tuple

into its individual elements.

case (int x, int y):
case (int x, int y) when x >
y:

Positional pattern

(with constant)

Matches values based on a positional

condition with a constant value.

case 1, 2:
case > 10, < 20:

Positional pattern

(with type)

Matches values based on a positional

condition with a value of a specific type.

case int x, int y:
case int x, double y when x
> y:



Name Description Examples

Property pattern

(with subpatterns)

Matches an object and applies

subpatterns to its properties.

case Point { X: > 0 and <
10, Y: > 0 and < 10 }:
case { Length: > 0,
Capacity: > 10 }:
case { Request.Uri.Scheme:
"http" or "https" }

Recursive pattern

(with subpatterns)

Matches a pattern against nested

subpatterns, including recursive

patterns.

case List<int> { Capacity:
0, [0]: 0, [1]: 1, [2]: 2 }:
case (1, (2, (3, _))) when _
== 4:

Relational pattern

(with constant

pattern)

Matches values based on a relational

condition with a constant pattern.

case < 10:
case > "hello":

Relational pattern

(with type pattern)

Matches values based on a relational

condition with a pattern of a specific

type.

case < (int)DateTime.Now:
case > (IEnumerable<int>)new
List<int>():

Size pattern (with

range)

Matches an array or collection with a

specific size range.

case int[] { Length: > 0 and
<= 10 }:
case List<int> { Count: > 0
and <= 10 }:

Logical pattern

(AND)

Matches a pattern if all subpatterns

match.

case int x and string s:
case int x and (x > 0 and x
< 10):

Logical pattern (OR)
Matches a pattern if at least one

subpattern matches.

case int x or string s:
case int x or (x > 0 and x <
10):

Logical pattern

(NOT)

Matches a pattern if the given pattern

does not match.

case not int x:
case not (x > 0 and x < 10):

List pattern
Matches a pattern against a sequence

of subpatterns.

case [1, 2, 3]:
case [1, .., 3]:
case [1, .. var s, 3]


